

高雄燕巢地區之西部麓山帶 少地管調查及監測案例探討

羅俊宏 萬鼎工程服務股份有限公司/大地技師

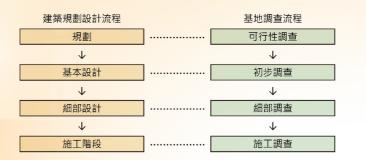
孫漢豪 萬鼎工程服務股份有限公司/大地技師

孫維政 萬鼎工程服務股份有限公司/土木設計部經理

魏佳韻 交通部高速公路局工務組/副工程司

陳琨曜 交通部高速公路局南區養護工程分局屏東工務段/副段長

摘要


本文以位於高雄市燕巢地區屬台灣西部麓山帶地質區之邊坡為例,探討如何在設計階段有限地時 間與工程經費等條件下,進行全面性的地質調查與監測,以獲取最高效益之成果。同時,亦能夠對於 案例邊坡之地質構造與地層特性有充份的瞭解,除供作為監測期間邊坡安全性評估與緊急應變措施研 擬之參考依據外,亦可作為後續規劃設計與營運管理之基礎。

一、前言

近年來極端氣候事件頻繁,豪雨成災亦時 有所聞,其中坡地災害對於台灣農業及維生基礎 設施衝擊影響甚鉅,經常造成人民生命財產鉅大 的損失,因此政府單位相當重視坡地防災,每逢 颱風豪雨,除對於高風險之坡地社區進行疏散撤 離外,山區道路亦實施預警性封閉,以減少人員 傷亡。

為確保邊坡或其設施之穩定性,於全生命 周期之不同階段可妥適規劃監測系統,以確保 安全。進行坡地開發與整治前,首要應對於所 **處坡地條件有足夠之瞭解,依據建築物基礎構**

造設計規範 3.2.2 節:「建築物基地之調查可配 合建築計畫之規劃設計及施工作業階段逐步辦 理,調查之精度由低至高,並視工程之重要性 與地層之複雜性,採取不同之步驟。調查步驟 包括資料蒐集、現場踏勘、初步調查與細部調 查。為特殊目的或施工之需要,亦可在進行特 殊調查、補充調查或施工環境調查。」基地調查 與建築規劃設計流程之關係,如圖1。惟受制於 有限地時間與經費等條件,此調查流程對於小 型工程實不易達成,因此如何在有限條件下獲 取最高效益之地質調查成果,一直以來被大地 工程師視為重要的課題之一。

(改繪自建築物基礎構造設計規範) 圖 1 基地調查與建築規劃設計流程之關係

二、案例基址區域地質、地形與環境 現況

案例基址位於高雄市燕巢區,緊鄰國道3號 與國道 10 號系統交流道,屬台灣西部麓山帶地 質區範疇,基址位置如圖2,其地質、地形與環 境現況概述如下:

2.1 基址區域地質

西部麓山帶為台灣帶狀地質分區之一,位 於雪山山脈、中央山脈以西與濱海平原之間, 如圖3,為台灣造山帶之最西側,屬較年輕且 低矮的山脈,海拔約數百至二千多公尺之間, 由東向西山脈逐漸降低,與平地接攘處呈斤陵 地形。

依據經濟部地質調查及礦業管理中心五萬 分之一旗山地質圖幅(2013),案例基址係位於 南勢崙砂岩與嶺口礫岩層交界,以嶺口礫岩層為

圖 2 案例基址位置概要圖

(摘自經濟部地質調查及礦業管理中心地質知識網絡) 圖 3 台灣地質分區圖

主,鄰近區域出露之地層,包括有中新世晚期之 烏山層、上新世早期之蓋子寮頁岩、上新世之南 勢崙砂岩、上新世晚期至更新早期之古亭坑層、 更新世之嶺口礫岩、階地堆積層及全新世之沖積 層等,區域地質如圖4,其中嶺口礫岩與烏山 層、蓋仔寮頁岩、南勢崙砂岩為交角不整合接 觸,與大社層呈現局部不整合接觸(吳樂群, 1993);南勢崙砂岩則與下伏蓋仔寮頁岩為整合 接觸,而與上覆嶺口礫岩間有地層缺失(Chi, 1979)。

2.2 基址地形與環境現況

案 例 基 址 為 一 路 塹 邊 坡 , 走 向 約 呈 N22°W, 向西南傾斜, 邊坡全長約 220 m, 坡 高約60m,採階梯式配置,共計有6階,每階 高度約10 m,各階並設有1~3 m 寬巡檢平台 及排水溝,排水流向由北向南,除二端外坡面

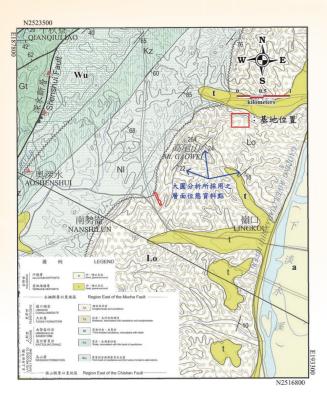


圖 4 案例基址 1/50,000 區域地質圖

間並無設置縱向排水。邊坡地形陡峭,坡度 V:H=2:1,根據現場地形測量結果,坡面最 高處高程約為EL.+170m,最低處則約 EL.+108m °

為防止坡面沖刷及逕流入滲,現況邊坡係 採噴凝土等人工構造物覆蓋保護,於基址東北 侧存有許多混凝土平台, 並留有陸軍單位遺留 之軍事樁,推估為已裁撤之陸軍馬場營區舊 址。經查,該營區房舍已於2017年全數拆 除,僅留下房舍之混凝土地坪,基址現況照片 如圖 5。

三、地質調查規劃與地質圖繪製

就多數土木人員而言,對於地質調查之認知 多與「地質鑽探」劃上等號,此觀點於一般地層均 匀性較高之沖積平原,或許尚能滿足規劃設計之需 求,惟若位於地質條件複雜且多變之山區,單就地 質鑽探恐不易獲取充足之地層資訊,因此本案例建 議應執行包括:可涵蓋「面」的地表地質調查、 「線」的地球物理探測及「點」的地質鑽探與相 關試驗,將先經由較巨觀、全面的廣域調查,再 視工程需求調整局部區域之調查的精細度,方能 於有限地時間與經費等條件下,獲取最高效益之 地質調查成果,作為後續規劃設計與營運管理之 基礎。針對本案例地質調查作業方式,概述如下:

3.1 面一地表地質調查

案例基址經地表地質調查結果顯示, 現況邊 坡大部分由噴凝土等人工構造物所覆蓋,僅於基 址東北側鑽探孔位 B3-1 及 B3-3 之間(露頭點1) 及基址南端(露頭點2)發現主要由礫岩夾砂岩組 成之岩層露頭,如圖6所示。由露頭點1量測到之 岩層層面位態為 N50°E/13°S, 無觀察到節理面; 露頭點2則無層理面可供觀察。由於露頭點1之層 面為礫岩及砂岩之界面,岩質較為鬆散,於清理 層面時,常有礫石掉落而破壞原本完整之層面, 故所量測到之層面位態可能存有誤差,因此參考 案例基址區域地質圖及前期調查結果之岩層位態 進行大圓分析。經採用鄰近位態 N50°E/18°S、 N42°E/24°S、N40°E/22°S 及 N28°E/22°SE,可求 得基址代表性位態為 N41°E/20°S。

圖 5 案例基址現況空拍影像

圖 6 案例基址嶺口礫岩露頭

3.2 線一地球物理探測

為瞭解案例基址所處邊坡廣域之地層及地 下含水層分佈狀況,本案例係規劃利用地球物理 探測方式,採地電阻影像剖面法(Resistivity Image Profiling, RIP) 進行探測,測線依據基址 地形進行佈設,如圖7,共計佈設6條測線,測 線總長約 1.017.5 m。探測原理在此不做贅述, 僅就探測結果概述如下:

1. 測線 1 (第一階平台)

探測結果顯示,第一階平台以下岩層以 泥岩為主,南側深度 40 m 內主要為疏鬆砂 岩,整體概可分為四個部分,如表1及圖8(a) 所示。

2. 測線 2 (第二階平台)

探測結果顯示,第二階平台北側以泥岩為 主,南側以疏鬆砂岩為主,並夾有礫石,整體概 可分為四個部分,如表 1 及圖 8(b) 所示。

3. 測線 3 (第三階平台)

探測結果顯示,第三階平台北側為泥岩,南 側以疏鬆砂岩及礫石為主,整體概可分為四個部 分,如表1及圖8(c)所示。

4. 測線 4 (第四階平台)

探測結果顯示,第四階平台推測皆為疏鬆砂 岩, 地表下深度 40 m 內夾有礫石, 整體概可分 為四個部分,如表1及圖8(d)所示。

5. 測線 5 (邊坡南側縱斷面)

探測結果顯示,邊坡南側地表下 25 m 內主 要為礫石層夾薄層黏土,整體概可分為三個部 分,如表1及圖8(e)所示。

6. 測線 6(邊坡北側縱斷面)

探測結果顯示,邊坡北側深度 30 m 內主要 為乾燥砂岩,深度 30 m以下為泥質砂岩,整體 概可分為二個部分,如表1及圖8(f)所示。

綜整地電阻探測結果,案例基址主要為泥 岩、砂岩及礫岩交互沉積所構成,其中北側以泥 岩夾砂岩或砂岩夾泥岩為主,南側則以礫岩夾砂 岩為主,岩性並隨深度變化。

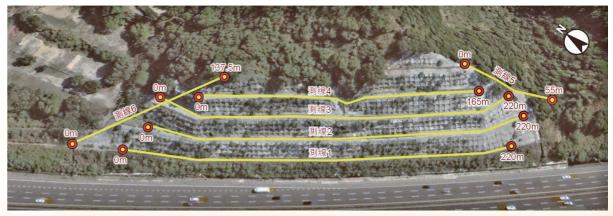
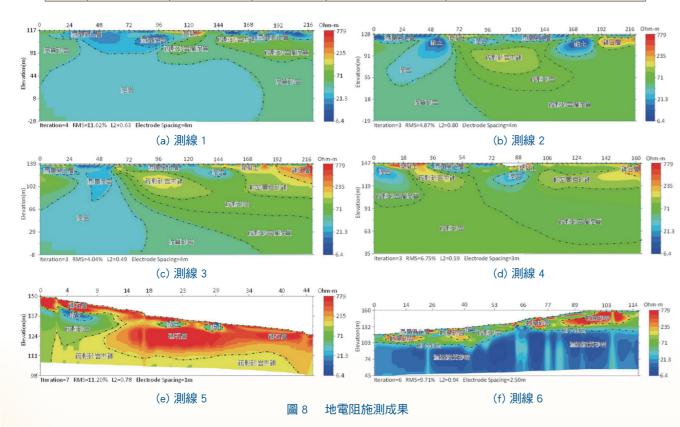



圖 7 地電阻探測測線配置圖

表 1 地電阻探測結果綜整表

測線 位置 (m) 深度 (m) 電阻率 (Ω-m) 色調 0~32 0~48 70 綠色	岩性	
0 100 FORT 10 YEAR	泥質砂岩	
0~180 50以下 40 淺藍色	泥岩	
1 22~112 0~36 6.4~25 淺藍~深藍色	濕潤風化層與濕潤泥岩	
90~220 15~90 70 綠色	疏鬆砂岩偏泥質、泥質砂岩	
0~68 10~100 10~40 淺藍~深藍色	黏土與泥岩	
2 0~68 100以下 70 綠色	泥質砂岩	
2 68~220 20以下 60 綠色	疏鬆砂岩偏泥質	
108 40 150 黄色	疏鬆砂岩夾礫石	
0~90 0~147 <40 淺藍~深藍色	泥岩	
60以上 30 淺藍色	濕潤泥岩	
3 70~220 50~147 70 綠色	疏鬆砂岩、疏鬆砂岩偏泥質、泥質砂岩	
84~116 18~36 150 黄色	疏鬆砂岩夾礫石	
216 10 750 紅色	礫石層	
2~20 5~35 40 淺藍色	泥岩	
32~50 15~35 150 黄色	疏鬆砂岩夾礫石	
4 35~112 80 綠色	疏鬆砂岩	
4 65~165 60~100 60 綠色	疏鬆砂岩偏泥質	
160 5 700 紅色	礫石層	
99~165 5~40 110~150 黄綠色	較密實粗砂礫石	
0~6 770 紅色	礫石層	
0~13 6~12 15 藍色	黏土層	
5 12~40 80 綠色	疏鬆砂岩	
13~45 0~20 770 紅色	礫石層局部夾有黏土層	
15~45 20以下 150	疏鬆砂岩夾礫石	
0~30 60 線色	疏鬆砂岩局部夾有乾燥砂岩	
6 0~116 30以下 6.4~30 淺藍~深藍色		

3.3 點一地質鑽探與相關試驗

地質鑽探作業主要為取樣供岩性種類判 釋並獲取相關物理及力學性質,其結果可供 地表地質調查及地球物理探測結果相互檢視

驗證。本案例共計佈設 14 孔地質鑽孔,鑽探 深度根據路塹邊坡平台高程差異,介於10~ 45 m,鑽孔分佈如圖9所示,鑽探深度總計 395 m °

圖 9 基址地質鑽探孔位分佈

依據 B1-2、B2-2、B3-2、BH-1 之鑽探結果 初步判釋,基址北側上半部地層以礫岩層偶夾砂 岩為主,下半部則主要為泥岩層或砂質泥岩層所 組成,基址北側地層剖面如圖 10 所示;而依據 B1-4、B2-4、B3-4、BH-2 之 鑽 探 結 果 初 步 判 釋,顯示基址南側地層呈現礫岩及泥岩層交錯分 佈情形,基址南側地層剖面如圖 11 所示。

3.4 二維及三維地質圖製作

綜整本案例地表地質調查、地球物理探測 及地質鑽探結果,研判基址地層分佈及其性質。 經判釋,本基址共計出露7層岩層,各岩層由下 至上(由老至年輕)分述如下,並以地質圖作圖 法繪製基址 1/1.000 地質圖如圖 12 所示。

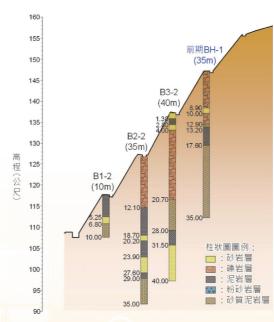
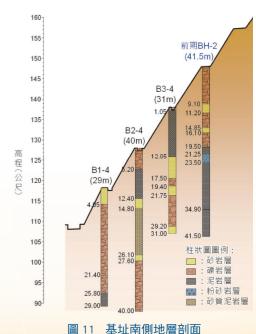



圖 10 基址北側地層剖面

- 1. 灰色砂岩偶夾泥岩(SS/MS):以中粒砂岩為 主,偶夾粗粒砂岩及礫岩,因本層未完全出 露,無法估計其厚度。
- 2. 灰至灰棕色泥岩偶夾砂岩 (MS/SS3): 砂岩 及部份泥岩因風化呈灰棕色,部份岩體受節 理面影響較為破碎,厚度約為 10 m。
- 3. 灰色砂岩夾泥岩(SS/MS): 為細至粗粒砂岩偶具 平行紋理,部分有互層現象,厚度約為9~11 m。
- 4. 灰棕色泥岩偶夾砂岩 (MS/SS2): 砂岩及部 分泥岩因風化呈灰棕色,部份岩體受節理面 影響較為破碎,厚度約為5~8m。
- 5. 灰色礫岩夾砂岩(Cg/SS2):本層為主要出露 之礫岩段,礫岩膠結鬆散,砂岩約1至數公 尺,厚度約為20~25 m。

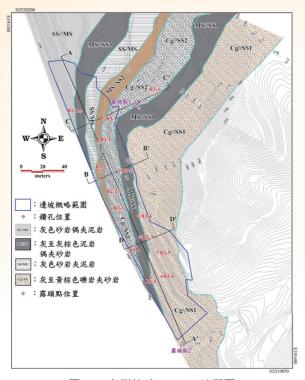


圖 12 案例基址 1/1,000 地質圖

- 6. 灰色泥岩偶夾砂岩 (MS/SS1): 以泥岩為 主,偶夾細粒砂岩,砂岩偶具平行紋理,厚 度約為 10 m。
- 7. 黃棕色礫岩夾砂岩 (Cg/SS1): 以黃棕色礫岩 夾砂岩為主,礫岩膠結鬆散,砂岩約1至數 公尺,因本層未完全出露,無法估計其厚度。

另由 3.1 節 可 知,基 址 代 表 性 位 態 為 N41°E/20°S,基址邊坡走向約為 N22°W,與位

態走向夾角約為 63°, 研判基址應屬斜交坡,基址剖面如圖 13 至圖 15。由於基址邊坡南北側所出露之地層不盡相同,依北側之地層剖面(如圖 14),主要出露的地層以泥岩偶夾砂岩及砂岩夾泥岩為主;南側之地層剖面(如圖 15),主要出露之地層以礫岩為主,推估厚度可能達 20 m以上。茲就地形測量結果,並套繪基址地質圖,以3D 透視圖方式呈現基址地質,如圖 16 所示。

四、監測系統設置與觀測結果

本案例基址除進行全面性之地質調查外,並利用地質調查期間進行邊坡監測系統設置,包括:傾斜管、水位觀測井及光達變位監測系統等,系統設置後並為期2年監測,以瞭解基址邊坡之變動性、可能滑動深度及地下水位分佈情形,作為後續安全評估之依據。茲就各項安全監測系統設置與觀測結果,分述如下:

4.1 傾斜管位移監測

為獲取較全面的邊坡位移資訊,本案例隨地質鑽探作業,於邊坡 $1 \sim 3$ 階平台進行傾斜管埋設,包括 B1-2 (10 m)、B1-4 (29 m)、B2-1 (35 m)、B2-2 (35 m)、B2-4 (40 m)、B3-1 (35 m)、B3-2 (40 m)、B3-3 (45 m)、B3-4 (31 m)等 9 孔,加上位於第 4 階平台之前期 BH-1 (35 m) 孔,共計 10 孔傾斜管進行監測,傾斜管配置如**圖 17**。

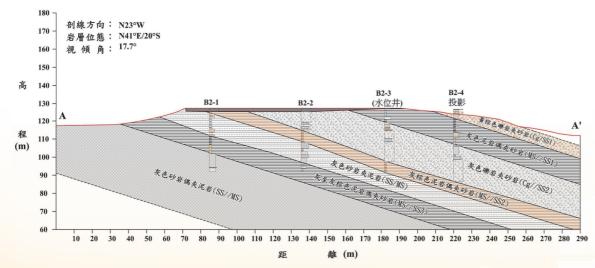


圖 13 地層縱向 A-A'剖面圖

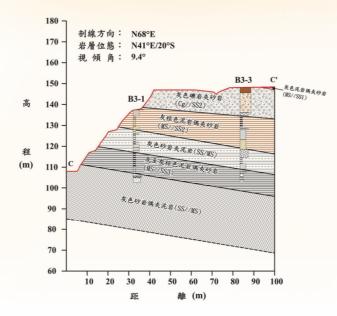


圖 14 北側地層 C-C'剖面圖

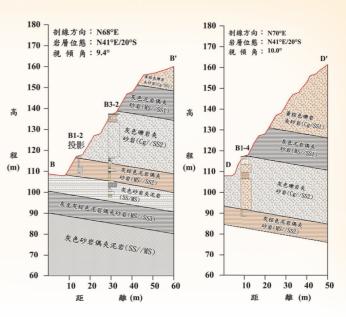


圖 15 南側地層 B-B'及 D-D'剖面圖

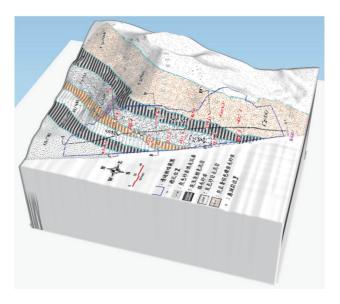


圖 16 案例基址 3D 地質透視圖

傾斜管採用 2.75 吋 ABS 管材,參考前期監測記錄,埋設深度均達可能滑動範圍以下深度,透過各階傾斜管不同深度之位移反應,了解基址邊坡可能之滑動行為與變動趨勢。監測方式採人工記讀,頻率為每月 1 次,遇鄰近區域地震震度達 5 級(含)以上或颱風、豪大雨事件,鄰近測站24 小時累積雨量超過 350 mm 時進行加測。

為期2年之傾斜管觀測結果如**圖18**,顯示垂直邊坡之最大位移量約為13.15 mm,其中北側邊坡最大位移量介於7.06~-13.15 mm之間,南側邊坡則介於7.83~-7.90 mm之間,均遠小於警戒值50 mm,整體位移量並不顯著,且略呈北側內縮、南側外擴趨勢。經參閱日本地滑對策

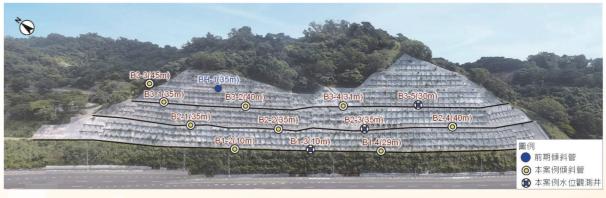


圖 17 案例邊坡監測儀器配置概要圖

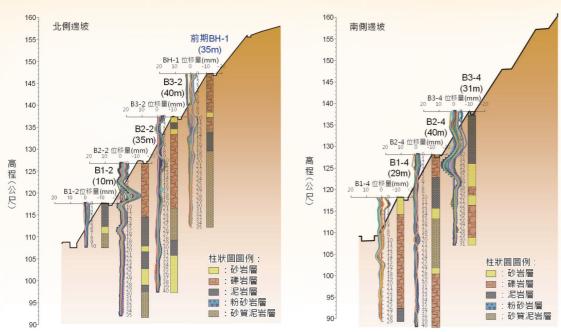


圖 18 案例邊坡傾斜管觀測結果

技術協會之邊坡滑動標準(1978),如表 2,以 位移速率為判斷標準,則案例邊坡整體平均日變 化量介於 0.22~0.01 mm,考量監測儀器容許誤 差範圍,屬準確定變動~未變動情形。

表 2 日本地滑對策技術協會邊坡滑動標準(1978)

變動種別	日變化量 (mm)	月變化量 (mm)	一定方向 趨勢	活動性判斷
緊急變動	20 以上	500 以上	非常顯著	急速崩壞
確定變動	1以上	10 以上	顯著	活潑運動
準確定變動	0.1 以上	2以上	略顯著	緩慢運動
潛在變動	0.02 以上	0.5 以上	稍有	待持續觀測
未變動	_	儀器誤差內	無	現況穩定

4.2 地下水位監測

除傾斜管外,本案例亦隨地質鑽探作業分別 於第 $1 \sim 3$ 階平台的 B1-3、B2-3 及 B3-5 等 3 孔 鑽孔埋設自記式水壓計,以利案例邊坡地下水位 之連續性記錄,水位觀測井配置如**圖 17** 所示, 採 2 吋 PVC 管,監測頻率為每小時記錄一筆。

為期2年之地下水位觀測記錄如**圖19**,顯示位於第2、3階平台之B2-3及B3-5孔水位隨降雨量變化遠較位於第1階平台之B1-3孔顯著,監測期間B1-3孔水位介於EL.+109.75~

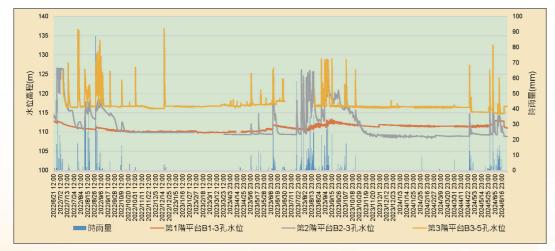


圖 19 案例邊坡地下水位觀測結果

113.39m,約位於地表下 3.76~7.40m 間;B2-3 孔水位介於 EL.+108.36~126.62m,約位於地表~地表下 18.26m 間;B3-5 孔水位則介於 EL.+114.69~136.87m,約位於地表~地表下 22.15m 間。根據監測期間現場勘查,第 2、3 階 水位達地表處,係受排水溝堵塞積水所致,經現場清除後,水位係有明顯下降情形。此外,推估亦與觀測井所埋設地層之含水特性有關,基址北側主要為泥岩偶夾砂岩及砂岩夾泥岩,基址南側則以礫岩夾砂岩為主,基址南側地層相對有較佳的含水特性。

4.3 智能 LiDAR 變位預警監測系統

傳統之結構物變位監測,多半利用全測站 儀,以人工測繪方式進行單點、線狀量測,量測 過程除費時費工且操作過程易生誤差外,獲取之 測繪資料又因數據龐大整理不易,實難以即時資 訊呈現並達預警效果。鑒此,本案例使用光達 (LiDAR)變位監測系統進行全天候邊坡掃 描,利用光達面狀掃瞄特性獲取邊坡三維形 貌,掃描獲取之點雲資料透過人工智能物聯網 技術自動濾除雜訊並將資料即時上傳雲端伺服 器,經以法國 Rennes 大學開發之 M3C2 三維分 析理論進行變位即時解算,並比對不同時序之 空間資訊後,進而獲得邊坡即時位移狀況,以 預測可能之破壞行為。此外,配合管理值之設 定,可透過物聯網之告警裝置連動,達到即時變位監測預警之效益。

本案例採用之光達監測系統,以不移動、 不拆卸之固定方式進行設置,並透過內置之自記 式傾度儀掌握監測期間資料擷取之穩定性。共計 裝設 4 座光達監測機站於本案例路塹邊坡對向之 交控桿與燈桿,機站配置如圖 20 所示,掃描面 積達 6,680 m²,總計約 600 萬個點雲資訊,光達 掃描範圍及點雲分布如圖 21。

歷經 2 年的光達系統全天候掃描,結果如圖 22,監測期間單月最大位移量介於 -4.01 ~ 2.27 cm,整體邊坡位移亦呈北側內縮、南側外擴趨 勢;單月最大平均位移量僅約 1.79 cm,考量儀 器容許誤差,顯示監測期間邊坡並無明顯位移。

而為確認光達監測結果是否受環境等因素 而影響觀測結果之正確性,本案例於監測期間不 定期進行複測,以了解監測系統是否存有異常跡 象,俾利維管單位進行維護。複測方式以全測站 儀配合基址邊坡 11 處較不受植生等環境影響區 域設置之覘標點位進行量測比對,如**圖 22**,複 測結果顯示案例監測期間並無異常狀況,可提升 監測結果之可信度。

4.4 整體監測結果比較

案例邊坡經 2022 年 6 月 ~ 2024 年 6 月為期 2 年監測,期間並歷經 2022 年 9 月 17 日關山地

圖 20 案例邊坡光達變位監測系統機站配置概要圖

工程案例

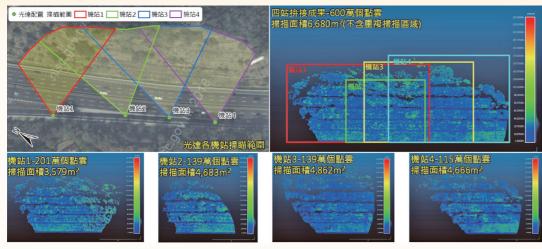


圖 21 案例邊坡光達掃描範圍及點雲分佈

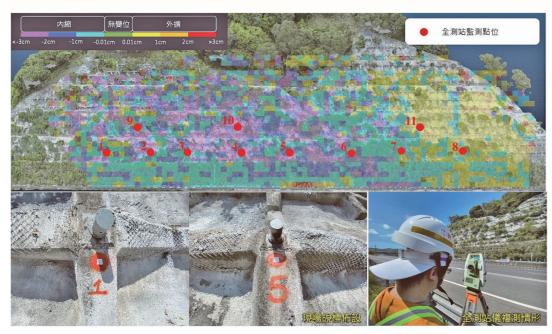


圖 22 案例邊坡光達變位監測結果及監測系統複測

震(規模6.6)、2022年9月18日池上地震(規 模 6.8)、2023年6月10日山地門地震(規模 5.4)、2024年4月3日花蓮地震(規模7.1)、 2023年7月杜蘇芮颱風、2023年8月蘇拉颱 風、2023年9月海葵颱風、2023年10月小犬颱 風等地震及颱風豪雨事件。

監測結果顯示,傾斜管最大垂直位移量僅 約 13.15 mm, 平均日變化量小於 0.22 mm, 屬準 確定變動~未變動情形;水位觀測井則顯示第 2、3 階受降雨量變化影響較第1階顯著,第1 階水位約位於地表下 3.76~7.4 m; 第 2、3 階水

位則分別位於地表~地表下18.26 m及 22.15 m,除受排水溝堵塞積水影響外,推估亦 與觀測井所埋設地層之含水特性有關;光達監測 則顯示單月最大位移量介於 -4.01 ~ 2.27 cm, 平 均最大位移量僅 1.79 cm,無明顯位移。

綜整監測結果,案例邊坡於監測期間並無 明顯變動情形,係屬穩定。而透過傾斜管及光達 監測結果可發現,邊坡整體變動趨勢略呈北側內 縮、南側外擴情形,惟幅度甚微。建議仍應對邊 坡持續進行監測,以作為預警及安全評估之參考 依據。

五、結論

綜整本案例地質調查及監測結果,歸納結 論如下:

- 1. 對於多數土木人員而言,地質調查多等同 「地質鑽探」,此觀點於一般均匀性高之沖積 平原,或許尚能滿足規劃設計需求,惟若於 地質條件複雜多變之山區,單就地質鑽探恐 不易獲取充足之地層資訊。建議執行包括: 可涵蓋「面」的地表地質調查、「線」的地球 物理探測及「點」的地質鑽探與相關試驗, 由較巨觀日全面的整體調查,再視需求調整 局部之調查精細度,以獲取最高效益。
- 2. 本案例基址經地表地質調查、地球物理探測 及地質鑽探等調查,經判釋,共計出露7層 岩層,北側主要出露地層以泥岩偶夾砂岩及 砂岩夾泥岩為主;南側主要出露地層則以礫 岩為主。基址代表性位態 N41°E/20°S 與基址 邊坡走向 N22°W 夾角約為 63°, 研判基址應 屬斜交坡。
- 3. 本案例除地質調查外,並利用地質調查期間 進行邊坡監測系統設置,包括:傾斜管、水 位觀測井等,系統設置後並為期2年監測, 以瞭解基址邊坡之變動性、可能滑動深度及 地下水位之分佈。 監測結果顯示, 傾斜管最 大垂直位移量僅約13.15 mm,遠小於警戒 值,整體變動甚微;若就位移速率,平均日 變化量介於 0.01~0.22 mm,屬準確定變動~ 未變動情形;水位觀測結果則顯示第2、3階 受降雨量變化影響較第1階顯著,第1階水 位約位於地表下 3.76~7.40 m; 第 2、3 階水 位則分別位於地表~地表下18.26 m及 22.15 m,除受排水溝堵塞積水影響外,推估 亦與觀測井所埋設地層之含水特性有關。
- 4. 有別於傳統多利用全測站儀,以人工測繪方 式進行結構物變位監測,本案例使用光達變 位監測系統進行全天候邊坡掃描,獲取之點 雲資料透過人工智能物聯網技術自動濾除雜 訊並將資料即時上傳雲端伺服器,經即時解

- 算、比對不同時序之空間資訊,進而獲得邊 坡位移狀況,以預測可能之破壞行為。另配 合管理值設定,透過物聯網之告警裝置連 動,達到即時變位監測預警之效益。光達監 測結果顯示, 監測期間單月最大位移量介於 -4.01~2.27 cm, 平均最大位移量僅 1.79 cm, 邊坡整體變動略呈北側內縮、南側外擴 趨勢,與傾斜管觀測結果有其一致性。
- 5. 本案例於 2022 年 6 月 ~ 2024 年 6 月監測期 間,歷經2022年9月17日關山地震(規模 6.6)、2022年9月18日池上地震(規模 6.8)、2023年6月10日山地門地震(規模 5.4)、2024年4月3日花蓮地震(規模 7.1)、2023年7月杜蘇芮颱風、2023年8月 蘇拉颱風、2023年9月海葵颱風、2023年 10 月小犬颱風等地震及颱風豪雨事件,並無 邊坡明顯變動情形,顯示監測期間邊坡均屬 穩定。後續仍應對邊坡持續進行監測,以作 為預警及安全評估之參考依據。

參考文獻

- 1. 中華民國大地工程學會(2017),「山坡地監測 進則」。
- 2. 內政部(2023),「建築物基礎構造設計規範」。
- 3. 林啟文(2013),「五萬分之一臺灣地質圖幅及 說明書-旗山」,圖幅第五十六號,經濟部中央 地質調查所。
- 4. 青山工程顧問股份有限公司(2021),「國道3 號北上383k+348~383k+719 邊坡地質鑽探、觀 測儀器設置及邊坡安全評估工作」報告書。
- 5. 萬鼎工程服務股份有限公司(2023),「國道3 號北上383k+348~383k+719 邊坡整治工程委託 測量、地質調查及設計技術服務工作」邊坡測 量大地調查成果報告書。
- 6. 陳文山,「臺灣西南部的造山演化史」,中央大 學地球科學學系演講簡報。
- 7. 陳文山、吳逸民、楊耿明、葉柏逸、洪嘉佳、 楊清淵、柯明淳、柯孝勳(2024),「臺灣地震 帶」,國家災害防救科技中心。
- 8. 廖瑞堂、陳昭維、紀宗吉、林錫宏(2013),「由 台灣監測案例探討邊坡位移量之管理值」,地工 技術,第136期,第59-70頁。 🔕