

公路隧道長期監測案例探討

林行丞 台灣世曦工程顧問股份有限公司/計畫副理、大地技師、應用地質技師

何金益 台灣世曦工程顧問股份有限公司/計畫工程師、大地技師

歐皓智 台灣世曦工程顧問股份有限公司/工程師、土木技師

劉正隆 勝田工程技術顧問有限公司/工程師、應用地質技師

王曹仁 勝田工程技術顧問有限公司/負責人、應用地質技師

一、前言

台灣自民國 60 年代十大建設開始,公路、 鐵路、輸水…等各類隧道工程即快速蓬勃發展, 包括民國 80 年代國道 3 號一系列隧道陸續完工,國內最長公路隧道(雪山隧道)於民國 95 年通車,象徵東部、南部居民擁有一條安全回家 的路,蘇花改與南迴改隧道工程於民國 109 年完 工啟用,近期有更多長大隧道工程於民國 109 年完 工啟用,近期有更多長大隧道工程規劃、設計與 施工中。隨著國內重大交通建設相繼完成,營運 階段之維護與管理需求增加,故有必要落實全生 命週期管養制度及引入新科技應用技術,以提升 隧道維管執行效能。

本文以某營運中隧道為例,先介紹隧道工程 全生命週期理念,應從規劃與設計階段即詳加考 量通車後之營運管理、維修及成本問題,包括: (1)建立完整之地質資料以供研析圍岩-支撐互 制系統,及檢核於全生命週期中,地質條件隨時 間之變異情形;(2)可能涉及地質、環境敏感區 之調查分析成果、風險評估及因應對策;(3)全 光譜方案思維進行研擬、比較,以公路設施全生 命週期之觀點詳加評估各量化指標;(4)記錄與 研析施工中重要事件,以供後續設施維護補強工 法決策之參考;(5)建置施工中與營運階段監測 系統,採長期監測之觀念於隧道地質弱帶區段安裝監測儀器,瞭解圍岩特性及期達預警之功效; (6)統整歷年監、檢測及維修紀錄,評估異狀原因,以及時對症下藥。最後探討該隧道目前辦理營運階段長期監測之相關作為與觀測結果,期能提供日後建構新世代公路隧道工程之參考。

二、隧道監測之工程地質調查與 風險評估

本案例隧道沿線地質主要為潮州層之硬頁 岩為主偶夾粉砂岩,區域性地質構造為複褶皺, 局部地區具緊密拖曳褶皺及破碎帶(如圖1), 亦常見沿劈理面發育之剪裂帶,工址整體地質構 造複雜且岩性單調(羅國峯,2019),增加地質 調查工作難度,為掌握隧道沿線地質情況,設計 階段採用長距離水平探查孔(600 m),及隧道全 線地電阻影像剖面(RIP)探查,如圖2所示, 以掌握隧道地質及施工高風險路段。

為提供隧道工程分析、設計及監測使用之 完整地質資料,可進一步建立工址地質概念模型,從區域地質文獻回顧、地表地質調查、地球 物理探測、地質鑽探(確認地層、構造、補充及 取得大地工程參數)等,並經由有經驗之地質師

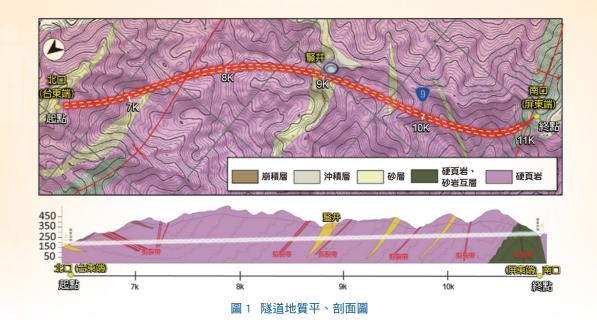


圖 2 隧道全線地球物理探測成果

綜合各項資訊,建構出合理之三維地質模型,在 隧道興建之初即掌握剪裂帶、破碎帶及湧水潛 能,可作為後續施工中監測配置及完工營運監測 重點之參考。

三、隧道全光譜設計思維及監測考量

3.1 路線設計

設計階段考量節能減碳,採減少土方開挖及結構材料使用,藉由詳細之路線方案研擬,隧道全長由規劃階段之5,000 m,縮短400 m之隧道段,以中長跨度之橋梁替代,且調降原規劃縱坡由3%至2%,可增加隧道營運安全及降低車行排廢與耗油量,有利維管及隧道延壽。

3.2 隧道設計

主隧道考量長期穩定、斷面設計納入維修補強淨空餘裕、排水容量與襯砌設計水壓,於重點區段(湧水或破碎帶)安裝襯砌背側水壓計,以長期監測隧道結構全生命週期之水壓變化情形,本案例營運監測、檢測及維管流程如圖3所示。

通風豎井設計考量後續營運維護,於井側 設置樓梯及隔間牆,以供人員進行管線巡檢及 維護,井口預留設備材料孔,可供吊放儀器做 定期檢測(豎井襯砌狀況記錄),或必要時可供 人員施做結構補強。

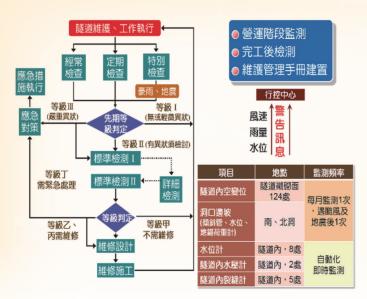
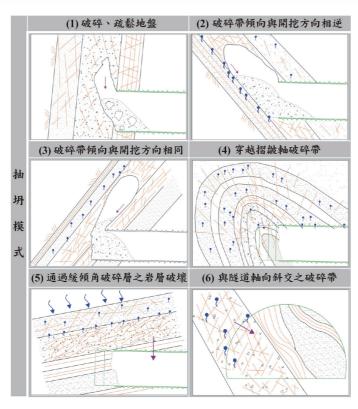
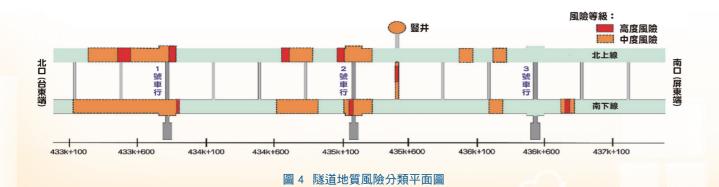


圖 3 隧道維護管理流程圖

施工中每10~30 m 設置1處副計測斷面(收斂岩釘),及每200 m 左右設置1處主計測斷面(收斂岩釘、伸縮儀、計測岩栓及噴凝土應變計),於安裝與降挖後7天內,每天監測1次,1個月後頻率改為每週監測1次,監測6個月後如經評估隧道變位已屬穩定狀態則改為每月監測1次。本計畫亦針對隧道營運階段規劃監測,於襯砌面上安裝124處收斂岩釘斷面,並每個月辦理1次內空變位監測。


3.3 地質風險評估與監測規劃


本工程整合各階段成果(地質資料、抽坍與 湧水事件位置、規模、致災模式…),對隧道沿線 作地質風險評估(如圖 4),依風險程度規劃佈設 營運階段監測,以瞭解病症、找出真正病因,以 對症下藥。本隧道各類風險地質模式說明如後。

1. 隧道開挖抽坍模式分類

歸納本隧道抽坍模式,可概略分為:(1)破碎、疏鬆地盤,破壞時多為垂直坍落;(2)破碎帶傾向與開挖方向相逆,破壞時多沿弱面順向滑動;(3)破碎帶傾向與開挖方向相同,破壞時多為小規模高角度坍滑;(4)穿越褶皺軸破碎帶,向斜區易湧水,背斜區易鬆弛坍落;(5)通過緩傾角破碎地層之岩板破壞,破壞多為頂拱落盤且抽坍規模較大;(6)與隧道軸向斜交之破碎帶,破壞時多為側壁擠壓,相關類型如表1所示。

表 1 本隧道抽坍模式彙整表

隧道開挖過程遭遇不良地盤之抽坍段,長期若地盤隨時間弱化可能對襯砌造成不良影響,因各類抽坍模式,於日後對襯砌施加之壓力大小、方向、範圍均不相同,故災害歷史之瞭解對日後營運階段監測甚為重要。

2. 隧道開挖湧水模式分類

本隧道湧水模式可概略分為:(1)斷層破碎帶型、(2)構造富水型、(3)微裂隙型等類型,如表2所示。開挖過程中曾發生27 T/min之突發巨量湧水,經緊急處理、補充地質調查建構地質模式,及打設密集排水管與灌漿(羅國峯等,2018),終順利通過湧水破碎段,惟湧水地盤未來仍可能持續出水造成岩體弱化或襯砌滲水等問題,故針對向斜構造軸部或剪裂破碎帶等區域,及施工中曾遭遇較大湧水位置規劃長期監測,以關注(地表降雨過後)地下水位與隧道出水量之變化關係。

3. 隧道外支撐異狀成因分類

隧道開挖外支撐異狀(噴凝土裂縫、鋼支保 挫屈)可能成因可概略分為:(1)岩體強度低, 如位於破碎硬頁岩夾剪裂泥帶、(2)岩體弱面異 向性,尤其為砂頁岩互層時,因岩性強度、透水 性及異向性等差異,弱面因水浸潤而弱化,易沿 其滑動引致變形及噴凝土開裂、(3)地下水因 素,造成岩盤細粒料流失或岩體弱化、(4)擠壓 性岩盤,岩盤強度比(岩體強度/現地應力)越 低擠壓潛能越高、(5)依時變形特性,岩體受地 下水弱化影響,隨時間有強度降低情況,致隧道 產生塑性潛變(超過潛變應力門檻)、(6)應力交 互影響,包括施工順序及雙孔互制之效應、(7) 大地應力,板塊擠壓造成之岩體應力增加。

隧道施工階段曾出現支撐異狀區段,考量 岩體可能俱依時變形潛勢而持續弱化,故於營運 階段加以規劃襯砌微變位監測,以獲得斷面精密 變位及探討襯砌受力行為,有利隧道安全評估。

4. 隧道風險回饋營運階段監測配置

營運階段監測佈設考量歷次抽坍與湧水事件、施工中監測變形趨勢、沿線地盤特性、易受 震損壞區段及施工補強紀錄等,針對高風險區段 及預期可能變形或產生異狀之關鍵位置,優先配 置相關監測項目包括:洞口邊坡傾斜管、水位井 及地錨荷重計,隧道內空變位、微變位監測、裂 縫計、水壓計、流速計、水位計、襯砌影像掃描 及豎井襯砌紀錄等,除定期關注趨勢變化外,亦 可作為日後比對研判之參考,以充分掌握隧道現 況。本工程營運監測配置詳如圖 5。

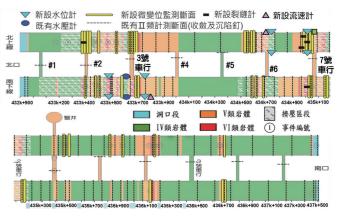
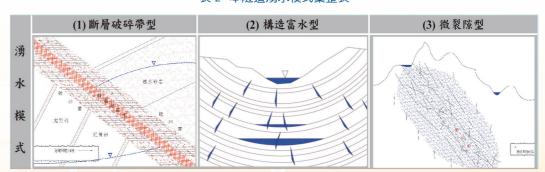



圖 5 隧道監測配置平面圖

表 2 本隧道湧水模式彙整表

工程案例

四、營運階段監測作業

本案例營運中隧道長期監測包括:洞口邊坡 監測、隧道內空變位、排水量、裂縫、微變位監 測、襯砌影像掃描及豎井襯砌錄影等,並參考黃 燦輝等(1997、1998、2008)建議之隧道安檢準 則,據以辦理之隧道安全評估及等級分類,相關 作業分別說明如後。

4.1 洞口邊坡監測

洞口是隧道進出的唯一通路,故需確保

其穩定性,本隧道洞口係採格樑護坡加地錨,施工中配置傾斜管、水位井、沉陷點及地錨荷重計等觀測儀器進行量測。隧道南洞口南下線施工中曾因地質變異(風化破碎岩段較北上線為長)問題,監測顯示邊坡有位移情況,經現場採打設補強岩栓及地錨,終抑制邊坡滑動。營運階段仍持續辦理監測,量測頻率為每月1次,目前觀測結果呈穩定情況(如圖6),後續仍持續關注及辦理定期觀測。

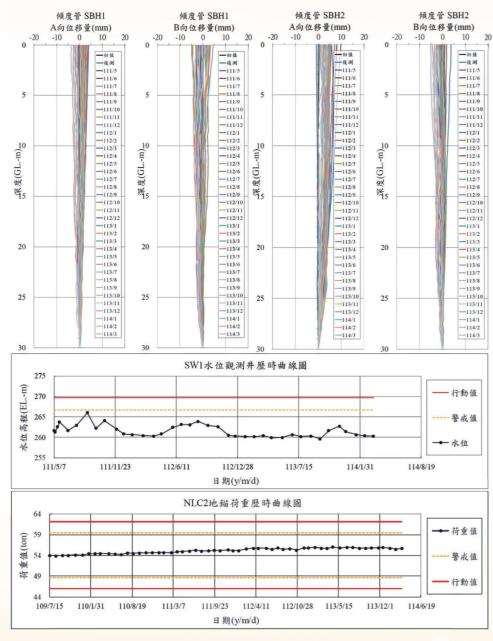


圖 6 隧道洞口邊坡監測結果

4.2 隧道內空變位監測

施工期間為瞭解隧道周圍地盤與支撐互制行為,爰於外支撐上佈設包括:內空變位(收斂釘及頂拱沉陷釘)、伸縮儀、計測岩栓、噴凝土應變計等觀測儀器,以確保隧道安全性及經濟性。營運階段於隧道兩側襯砌面及通風隔板中央下緣設置反光覘標(如圖7),觀測結構是否有異常變位趨勢,藉以輔助評估隧道安全。

以施工中某次抽坍事件為例,開挖當時因遭遇裂隙水滲流使細粒料流失,加上岩盤解壓致破碎岩塊鬆動呈漸進式坍落,鬆弛範圍擴大使上方岩壓增加造成支撐遭壓毀。施工中隧道內空變位監測如圖8所示,各測線之監測歷時曲線顯示,位移量有隨隧道開挖輪進增加,惟尚未超出警戒值且經抽坍處理已順利通過,經監測穩定後已完成鋼筋混凝土襯砌,並完工通車。

營運階段於同一里程之隧道襯砌上裝設收 斂岩釘持續監測,監測成果如圖8所示,隧道各 淨空測線累計變位量測結果介於±5 mm左右, 無持續沿同方向之異常變化趨勢,僅觀察到隧道 通風隔板結構有隨季節溫度變化,及混凝土潛變

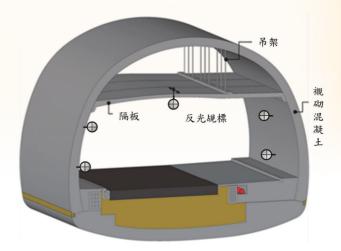


圖 7 營運階段隧道內空變位監測配置示意圖

圖 8 施工中隧道內空變位監測結果

與乾縮所引起之長期變位值,且均小於警戒值, 現況隧道襯砌尚屬安全狀態。

4.3 地質弱帶監測

該隧道為瞭解營運期間襯砌背後岩盤之水 壓力變化、硬頁岩地盤之擠壓或剪裂帶位移對隧 道襯砌之影響,本案針對施工中遭遇抽坍、湧 水、擠壓等地質脆弱敏感區段佈設營運階段監測 儀器(水壓計、水位計、流速計及裂縫計等,詳 表3及圖9),以建立現況監測資料庫作為未來 長期維護管理之評析基準。本隧道地質弱帶監測 為獲得即時觀測數據,採建置自動化即時傳輸系 統(如圖10),數據資料匯整於網路監測管理平 台之資料庫,可供維管人員查詢掌握隧道現況。

4.4 襯砌影像掃描作業

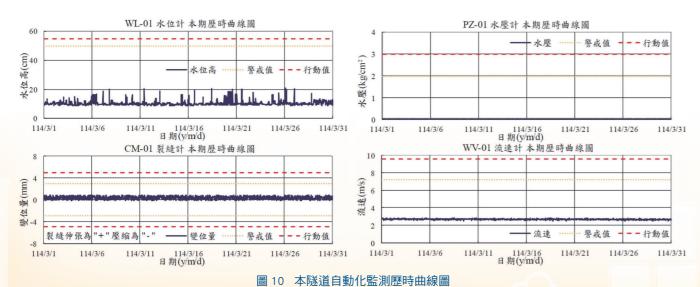
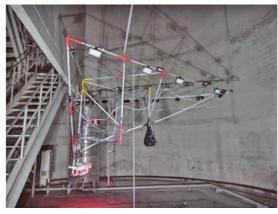
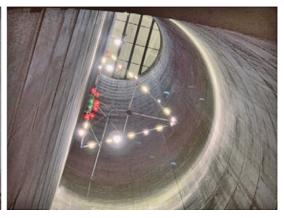

本案利用瑞士 Amberg 公司 GRP5000 雷射 掃描系統建立隧道襯砌完工後影像,定期每5 年掃描監測1次,透過襯砌掃描影像可快速記 錄隧道襯砌及通風隔板現況, 由影像展開圖進 行異狀判釋與描繪,記錄異狀種類、里程位置 等,並至現場作目視檢查予以查核,最後製成 隧道襯砌異狀展開圖,可供日後比對研判隧道 襯砌有無新增異狀。本案掃描範圍包括主隧 道、連絡通道及通風管道內,為國內首次於通 風管道內辦理襯砌影像掃描之隧道,及首創以 空拍機搭配吊架辦理豎井襯砌錄影,相關現場 掃描作業照片如圖 11 所示。

表 3 本隧道地質弱帶監測儀器彙整表

儀器項目	水壓計	超音波水位計	流速計	電子裂縫計
設置位置	親砌側壁外	集水井壁面	排水溝底	地質弱帶段施工縫,或新 增擴展裂縫
數量	2 處	8處	2 處	5 處
觀測目的	瞭解岩體水壓變化,評估 隧道襯砌受力	觀測水位高低變化,瞭解 隧道出水量變化	配合水位計量測結果,推 估隧道出水量	觀測裂縫變化,以評估裂 縫狀況與結構安全性

圖 9 本隧道地質弱帶監測儀器照片


(1) 主線隧道掃描作業


(2) 通風管道掃描作業

(3) 通風管道掃描作業

(4) 連絡通道掃描作業

(5) 豎井錄影作業

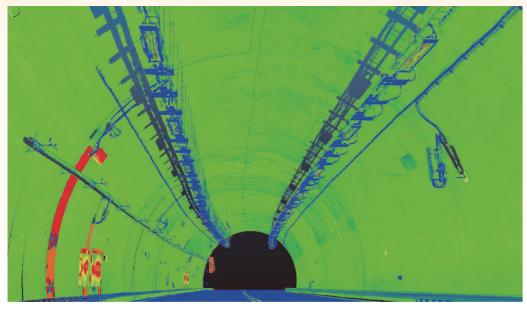

(6) 豎井錄影作業

圖 11 襯砌影像掃描及豎井錄影作業現場照片

掃描儀係記錄 360° 壁面影像,解析度可判 釋寬度 0.5 mm 以上與長度 1.0 cm 以上之裂縫, 及壁面滲水或白華情況。考量隧道已營運通車, 於掃描作業時如遇車輛行經將有殘影現象,故主 隧道掃描需分階段交維管制內外車道,採二次掃 描以獲得完整影像並拼接校正,如圖 12 所示。

4.5 隧道斷面微變位監測

一般隧道於營運初期無明顯裂縫分布,尚 無法由襯砌影像繪製之異狀展開圖判斷受力變 化,亦無法據以推斷肇因,且營運階段因周圍 岩體變形已收斂,襯砌異狀發生區之初期徵兆 有限(變形量不足),造成判斷困難,故為儘早

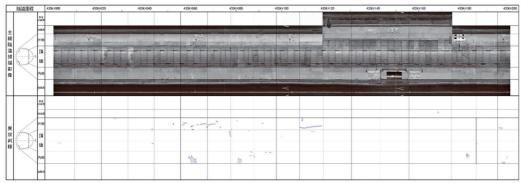


圖 12 襯砌影像掃描成果

掌握襯砌變形肇因,本隧道引入以高精度、三 維絕對座標、全斷面多測點之變位監測成果, 依邱雅筑(2014)建議之襯砌位移分離技術 (將測量結果拆解為水平平移、垂直平移與旋 轉,以及扣除掉剛體運動的斷面實際變形量), 藉以評估現況受力機制及其變化,提供關鍵資 訊以利維護作業安排。

隧道襯砌全斷面微變位作業係透過定期量 測相同之控制點及導線的絕對座標,於隧道內相 同斷面進行間距 0.3~0.5 m 之高精度全斷面測 量,有效掌握襯砌變位,並配合其他隧道檢測成 果,以綜合評估隧道外力肇因及其變化之影響。

本案參考歷史抽坍及擠壓事件,於地質弱 帶佈設共計 40 處斷面進行襯砌微變位監測,初 步量測比對成果如圖 13 所示,目前變位向量大

多無特定方向趨勢,整體運動量值極小,後續待 監測時程拉長,可持續觀測隧道結構是否有變位 之趨勢,以研判異狀成因及建議相關處理方式。

五、結語

公路隧道需引入全光譜設計理念,在設計 階段即予以考量隧道工程全生命週期管理,透過 建立完整之地質資料、施工中與營運階段之長期 監測,及統整施工紀錄與監、檢測資料,採積極 式維護理念,主動掌握隧道結構特性隨時間之演 化行為,研判可能引致破壞之潛在因子及其模 式,並透過自動化監測與定期觀測資料,與襯砌 掃描影像進行比對及研判,方得嚴謹的診斷破壞 機制及評估隧道安全,達兼顧行車安全、隧道耐 久穩固,及全光譜隧道設計思維與監測之目標。

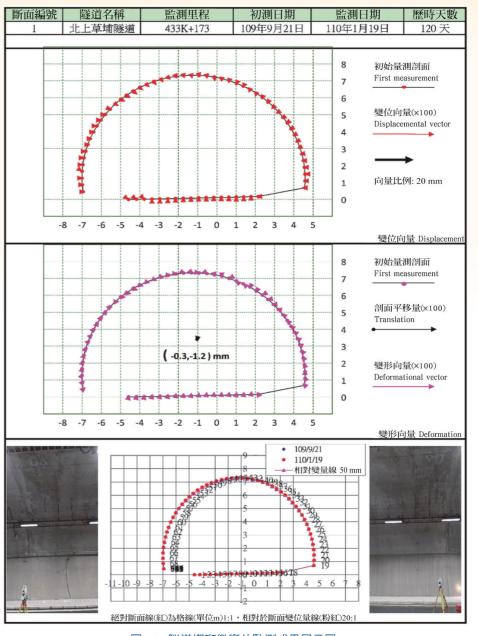


圖 13 隧道襯砌微變位監測成果展示圖

參考文獻

- 1. 黃燦輝、鄭富書(1997),「老舊交通隧道之安 全檢測、維修與補強技術研訂(I)」, 交通部專 題研究計畫成果報告。
- 2. 黃燦輝、鄭富書(1998),「老舊交通隧道之安 全檢測、維修與補強技術研訂(II)」, 交通部專 題研究計畫成果報告。
- 3. 黄燦輝、林銘郎、王泰典(2008),「隧道襯砌 非破壞性檢測技術之開發」,交通部鐵路改建工 程局東部工程處委託研究計畫報告。
- 4. 邱雅筑(2014),「營運中隧道變位模態解析與 高精度監測技術之研究」,博士論文,國立臺灣 大學土木工程學研究所。
- 5. 羅國峯,林衍丞,陳正勳,吳文隆(2019),「南 迴公路草埔隧道遭遇大量湧水案例探討」,第18 屆海峽兩岸隧道與地下工程學術與技術研討會。
- 6. 羅國峯、曾正郎、郭鑑智、王泰典(2018),「台 9線南迴公路安朔草埔段隧道異常湧水案例」, 地工技術,第158期,第75-86頁。 🙆